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It is shown that asymmetric waveguides with gain and loss can support a stable propagation of optical beams. This
means that the propagation constants of modes of the corresponding complex optical potential are real. A class of
such waveguides is found from a relation between two spectral problems. A particular example of an asymmetric
waveguide, described by the hyperbolic functions, is analyzed. The existence and stability of linear modes and of
continuous families of nonlinear modes are demonstrated. © 2014 Optical Society of America
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Waveguides are characterized by a specific variation
of the refractive index (RI) in the transverse direction.
Usually the refractive index at a central (core) region
is larger than that at cladding. Such variation creates
an optical potential that supports eigenmodes with real
values of the propagation constant. Each eigenmode
corresponds to the field distribution of a stable beam that
can propagate in a waveguide.
Even small loss (gain) destroys waveguide modes,

resulting in a decrease (increase) of the mode amplitude.
In [1,2], it is shown that waveguides with a proper distri-
bution in the transverse direction of gain and loss can
have stable eigenmodes. The idea of these works comes
from attempts (for example see [3]) to generalize quan-
tum mechanics to complex potentials. It was found that a
non-Hermitian Hamiltonian with a complex potential,
satisfying the parity-time (PT) symmetry, can have a real
spectrum. A PT-symmetric potential V�x� complies with
the following condition: V�x� � V��−x�, where a star sign
means a complex conjugate.
In the context of optics, the PT-symmetry means that

the real (imaginary) part of the RI is an even (odd) func-
tion of x. A study of PT-symmetric optical structures is
now an active field of research [1,2,4–10].
In present Letter, we extend a class of complex poten-

tials that admit a real spectrum. Namely, we present a
class of asymmetric potentials (waveguides) that sup-
port stable localized modes. There are other examples
of complex waveguides without PT-symmetry that
have a real spectrum. For example, in [9], such wave-
guides are found using the supersymmetry (SUSY)
method of quantum mechanics. The SUSY method
[11–13] allows one to construct two potentials that have
a related spectrum, using the same spectral problem.
In contrast, the approach used in this Letter is based
on a relation between two different spectral problems,
namely, the Schrödinger problem and the Zakharov–
Shabat problem.
We start with the general nonlinear Schrödinger (NLS)

equation that describes in the parabolic approximation
the propagation of optical beams in waveguides [14].

iψz � ψxx∕2� V�x�ψ � γjψ j2ψ � 0; (1)

where ψ�x; z� is an envelope of the electric field and
x and z are transversal and longitudinal coordinates:
Equation (1) is written in a dimensionless form. Variable
z is normalized with Zs � k0n0X2

s , while the field ampli-
tude scale is Ψs � 1∕��n0n2�1∕2k0Xs�, where Xs is the
size of a beam in the transverse direction, n0 is the
background refractive index, n2 is the nonlinear (Kerr)
coefficient, k0 � 2π∕λ, and λ is the laser wavelength.
We consider the RI as n�x; z� � n0 � Δn�x� � n2I�x; z�,
where I�x; z� is the beam intensity. Potential V�x� �
VR�x� � iVI�x� is related to the variation Δn�x� of the
RI, V�x� � k20n0X2

sΔn�x�. Parameter γ � 0 (γ � �1) for
the linear (nonlinear) case.

In order to find eigenmodes of Eq. (1), the field is
represented as ψ�x; z� � u�x� exp�iμz�, where u�x� is a
stationary mode and μ is the propagation constant.
The mode u�x� and μ are found from the following
spectral problem:

uxx∕2� V�x�u� γjuj2u � μu: (2)

The boundary condition is u��∞� � 0, since we are
interested in localized modes.

We consider first the linear case, γ � 0. Then Eq. (2)
corresponds to the stationary Schrödinger equation with
potential V�x�. When complex potential V�x� is taken in
the following form:

V�x� � �v2�x� � ivx�x��∕2; (3)

where vx ≡ dv∕dx, then Eq. (2) is related to another
spectral problem, namely to the Zakharov–Shabat
(Z–S) problem [15,16]. The Z–S problem is defined for
a two-component vector �ϕ1;ϕ2� and the spectral param-
eter λ as the following:

iϕ1;x − iv�x�ϕ2 � λϕ1;

−iϕ2;x − iv��x�ϕ1 � λϕ2: (4)

If we take [4,16],

u � ϕ1 � iϕ2; r � −i�ϕ1 − iϕ2�; (5)
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then an equation for u�x� is reduced to Eq. (2) with V�x�
defined in Eq. (3) with the plus sign and

μ � −λ2∕2: (6)

An equation for r�x� differs by sign in front of vx, which is
why the sign � is taken in Eq. (3). In general, potential
v�x� is a complex function in the Z–S problem. However,
in this Letter, we consider only real v�x�, since the rela-
tion between Eqs. (2) and (4) is valid only in this case.
Transformation (5) is well known (e.g., see [16], Sec. 2.12
and [4,12]), but to the best of our knowledge, there is no
application of this result to waveguides with gain
and loss.
The relation between the two spectral problems results

in an important conclusion that if the discrete spectrum
λj of the Z–S problem (4) with a real potential v�x� is
purely imaginary, then the Schrödinger problem (2) with
potential (3) has a real spectrum μj , found from Eq. (6),
where j � 1; 2;…. Since VI�x� ∼ vx, then

R
∞
−∞ VI�x�dx �

0 if v��∞� → 0, so that complex waveguides with poten-
tial (3) are gain–loss balanced waveguides.
If v�x� is an even function, then V�x� in (3) is a PT-

symmetric potential. Moreover, if the corresponding
Z–S problem has a purely imaginary discrete spectrum,
then the parameters of the complex potential V�x� are
below the PT-symmetry breaking threshold. One exam-
ple of a potential with a purely imaginary spectrum is
a rectangular box [17]. Another example is the potential
v�x� � v0 sech�x� [18]. Therefore, waveguides with gain
and loss, corresponding to these potentials, have stable
localized modes. The PT-symmetric potential V�x�, found
from Eq. (3) with v�x� � v0 sech�x�, is studied in [1,19].
It is necessary to note that the Z–S problem (4) with a

real potential has, in general, complex eigenvalues (EVs)
[15,20,21]. Let us consider a single-hump potential v�x�,
i.e., a function that is nondecreasing (nonincreasing) on
the left of some x � xp and nonincreasing (nondecreas-
ing) on the right of xp. As demonstrated in [20], the Z–S
problem with a single-hump potential has a purely imagi-
nary discrete spectrum. From this result and the relation
between the two spectral problems (2) and (4), we infer
that if v�x� is a single hump (asymmetric, in general)
function, then the Schrödinger equation (2) with poten-
tial (3) has real EVs. This means that a waveguide with a
single-hump distribution of the real part of the refractive
index and with the distribution of gain and loss defined
by (3) has stable localized modes.
As an example, we consider an asymmetric potential

V�x� defined as

V�x� � 1
2

h
ηv20 sech

2�x∕w� − i
v0
w

sech�x∕w� tanh�x∕w�
i
;

(7)

where

w � w1 for x < 0; and w2 for x ≥ 0; (8)

and v0, w1, w2 and η are constant parameters. When
η � 1, the potential (7) corresponds to form (3), where

v�x� � v0 sech�x∕w�. We use this value of η in all numeri-
cal examples below.

Figure 1(a), which is a result of numerical simulations
of Eq. (1), demonstrates the stable propagation of a
waveguide mode for v0 � 2, w1 � 1 and w2 � 0.5. As
an initial condition, we use an exact eigenmode found
numerically from Eq. (2). Since the potential V�x� is
asymmetric, the corresponding localized modes are also
asymmetric.

Figure 2 shows the dependence of discrete EVs μj on
the potential parameter v0. The EVs are found from the
numerical solution of the spectral problem (2) with the
potential (7) and (8). We apply the shooting method (e.g.,
see [22]), integrating Eq. (2) from the left and from the
right in a sufficiently large interval of x. A mismatch
of the function u and its derivative at a fitting point is

Fig. 1. Stable dynamics of waveguide modes for (a) γ � 0, and
(b) γ � 1 and P � 2. The other parameters are v0 � 2, w1 � 1,
and w2 � 0.5.

Fig. 2. Dependence of EVs (propagation constant) μj on v0 for
potential (7), w1 � 1 and w2 � 0.5. Solid (dashed and dotted)
lines are for the linear (nonlinear) modes, γ � 0 (P � 2, γ � 1
and γ � −1). The inset shows the real part (solid line) and the
imaginary part (dashed line) of the fundamental eigenmode of a
linear waveguide for v0 � 2.
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minimized by an optimization routine via an adjustment
of the boundary conditions [22].
Only the first three EVs are shown in Fig. 2. A number

near a curve corresponds to the number of the EV, j � 1,
2 and 3. It is known that for symmetric cases, w1 � w2,
the dependence of the EV λj of the Z–S problem is linear
on v0 [18]; therefore, μj is quadratic on v0. As follows
from Fig. 2, such quadratic dependence remains in the
asymmetric case as well.
Value η ≠ 1 introduces imbalance between the real and

imaginary parts of potential (7). In this case, there is no
corresponding Z–S problem with a real potential. As a
result, a spectrum of Eq. (2) with potential (7) is
complex. For example, for u0 � 2, w1 � 1 and
w2 � 0.5, when η � 0.8, μ1 � 0.57� 0.0082i, and when
η � 1.2, μ1 � 1.2 − 0.0039i.
Now we consider the nonlinear case, γ � �1. As fol-

lows from Eq. (1), nonlinearity results in an additional
self-induced potential VNL � γjψ j2. Though VNL is added
only to the real part of V , the effect of nonlinearity is not
the same as the deviation of η from the unity discussed
above. Namely, we find that the spectrum of the non-
linear system remains real in a wide range of the
parameters.
In presence of nonlinearity, EVs depend on the beam

amplitude (or on the total power P � R
∞
−∞ jψ j2dx) as well.

The dependencies of the ground state EVs on the ampli-
tude v0 for both values of γ and P � 2 are shown by
dashed and dotted lines in Fig. 2. The value P � 2 corre-
sponds to the total power of the fundamental soliton with
unit amplitude that exists when V�x� � 0 and γ � 1.
For γ � 1 (γ � −1), nonlinearity induces an attractive
(repulsive) potential, resulting in an increase (decrease)
of nonlinear EVs comparing with the linear ones.
The nonlinear EVs in Fig. 2 are found from Eq. (2) by

the shooting method. The optimization routine looks for
a continuous and smooth mode with the specified value
of P. In all cases studied, the imaginary part of μ is of the
order of the accuracy (typically 10−7–10−9) of the optimi-
zation routine. By increasing the range of x and the
accuracy, Im�μ� can be further decreased below 10−10.
The propagation of the nonlinear mode is shown in

Fig. 1(b). As an initial condition, we use an exact eigen-
function multiplied by �1� ϵ�x��, where ϵ�x� is a random
field with the uniform distribution in the range � 0; 0.01 �.
Absorbing boundary conditions are implemented to
minimize reflection of linear waves from the ends of
the computation window. The stable dynamics of nonlin-
ear modes, as in Fig. 1(b), is observed also for other
values of the system parameters and the soliton power.
It is necessary to mention that, actually, the mode

power slightly decreases in Figs. 1(a) and 1(b), and
can be approximated as P�z� ≈ P0 exp�−δz�, where
δ ∼ 10−4 − 10−6. However, this decrease is due to the
mode asymmetry and numerical discretization. It follows
from Eq. (1) that

Pz � −

Z
∞

−∞
Im�ψxxψ

��dx −

Z
∞

−∞
2VI jψ j2dx ≡ −I1 − I2: (9)

Integral I1 in Eq. (9) vanishes if one calculates it
analytically. This integral, calculated numerically with

equidistant discretization of asymmetric ψ on a finite
range of x, is not zero. Since the numerical error of cal-
culation of ψxx is of the order of �Δx�2, where Δx is a step
on x, integral I1 can be estimated as ∼�Δx�2P. Therefore,
the rate δ ∼ �Δx�2 can be varied by the step Δx. Indeed,
from numerical simulations of Eq. (1) for different initial
conditions, we find that δ ≈ 2.3 · 10−4 for Δx � 0.024 and
δ ≈ 1.8 · 10−5 for Δx � 0.006. The dependence of δ on Δx
indicates that the decrease of P is the result of the
numerical procedure, rather than the complex value of
μ. For symmetric potentials, w1 � w2, the soliton power
is constant in numerical simulations. Integral I2 is zero
when calculated numerically on a mode for symmetric
and asymmetric potentials.

The spectrum of nonlinear modes is real for other
values of P (see Fig. 3). The propagation constant of
solitons tends to that of the linear mode for either sign
of γ when P → 0. Therefore, there are continuous
families of stationary solitons that bifurcate from linear
modes.

An existence of continuous families of solitons in
asymmetric complex potentials is an important observa-
tion. Typically, for a given set of the system parameters,
dissipative solitons exist only for a fixed value(s) of the
soliton amplitude (power) (e.g., see [10,23]). In a recent
paper [10], the author suggests that PT-symmetry is “a
necessary condition for the existence of soliton families”
in the NLS equation with a complex potential. However,
this statement is based on the perturbation approach and
is not proven rigorously [10]. Our results indicate that
this condition should be extended to a wider class of
potentials.

Figure 4 shows the dependence of the amplitude A (the
maximum of jψ�x; z�j on x) and the full width at the half-
maxima (FWHM) a of the nonlinear fundamental modes
(cf. Fig. 2) on the potential parameter v0. The amplitude
of the mode for focusing nonlinearity (γ � 1) is larger
than that for defocusing nonlinearity (γ � −1), while
there is an opposite relation for the mode width. It is
known that the amplitude As and the width as of the fun-
damental soliton of the standard NLS model, Eq. (1) with
V�x� � 0 and γ � 1, are related to each other, namely,
Asas ≈ 1.76 (e.g., see [14]). In contrast, the product Aa
for the fundamental nonlinear mode varies on v0.

Fig. 3. Dependence of μ on P for γ � 1 (solid line) and for
γ � −1 (dashed line). The parameters of potential (7) are
v0 � 2, w1 � 1, and w2 � 0.5.
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We also mention that the Z–S spectral problem is
associated via the inverse scattering transform method
with the standard NLS equation [15,16]:

iqz � qxx∕2� jqj2q � 0: (10)

This establishes a relation between the Schrödinger
equation (2), γ � 0, with the complex potential (3) and
the NLS equation (10). In particular, if an initial condi-
tion, q�x; 0� � v�x�, where v�x� is a real function, of
Eq. (10), results in nonmoving solitons only, then the dis-
crete spectrum of Eq. (2) with (3) is pure real.
In conclusion, in this Letter, we demonstrate how the

relation between two spectral problems helps to design
waveguides with gain and losses that possess a real spec-
trum. It is shown that a waveguide with the distribution
of the RI in form (3), where v�x� is any (symmetric or
asymmetric) single-hump function, has a real spectrum
and, therefore, stable localized modes. A particular
example of asymmetric optical potential (7) with real
EVs is considered. It is also shown that continuous fam-
ilies of stable localized modes can exist in nonlinear
waveguides with asymmetric distribution of the RI.
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